Nitrous Anesthesia Course <u>Outlines</u>

INTRODUCTION: 3min.

Organization of the Seminar Series

<u>Goal</u>-Review Anesthesia with Nitrous Oxide

<u>Audience</u>- Health Care Providers

Format- Recorded video seminars with participation of students and residents

Requires- Access to relevant recommended literature

<u>Suggested</u>- On site knowledgeable clinician available for discussion of the presented subject

<u>Seminar Length</u>- Each topic could be covered in less than 45 minutes

<u>Faculty</u>- responsible for production for production Raymond White DDS, PhD
Dalton L McMichael Distinguished Professor
UNC Oral and Maxillofacial Surgery

William Proffit DDS, PhD
Kenan Distinguished Professor
UNC Orthodontics

SEMINAR ONE: Depths of Sedation/ Anesthesia and the Central Nervous System <u>32min.</u>

REFERENCES

Fenster JM: How nobody invented anaesthesia. Invention and technology. Summer 1996, pp24-35 de Vasconcellos et al:Nitrous oxide:are we still in equipoise? A qualitative review of current controversies. Br J Anaesth 111:877, 2013

Donaldson et al: Nitrous Oxide-Oxygen administration. JADA 143:134, 2012

Outline

History of nitrous oxide is the history of anesthesia:

Jos Priestley, Humphry Davy, James Watt, Horace Wells, Gardner Colton

Sedation / Anesthesia and Central Nervous System

Objectives

Explain how anesthesia evolved Differentiate among the changes in the CNS with sedation/anesthesia drugs

Evaluation Seminar One

1)Administration of oral drugs for sedation may render a patient unable to respond to verbal stimulation a-True

b-False

2)Nitrous oxide is the only anesthetic drug discovered in the 19th century still commonly administered today.

a-True

b-False

3)Levels of Sedation / Anesthesia should be determined by the route of administration of the drugs a-True

SEMINAR TWO: Routes for Drug Administration,

Pharmacology of Nitrous Oxide, and Benzodiazepines 41min.

REFERENCES

Sanders et al: Biologic effects of Nitrous Oxide. Anesthesiology 109:707, 2008

Papineni et al: safety of oral midazolam sedation use in paediatric dentistry; a review.

Int J Ped Dent 24:2, '14

Dionne et al: Balancing efficacy and safety in the use of oral sedation in dental outpatients.

JADA 137:502, '06

Outline

Options for Administration of Drugs for Sedation / Anesthesia Enteral (PO), Transmucosal, Intravenous, Inhalation, Intramuscular, Multiple routes Review of pharmacology of Nitrous Oxide and Benzodiazepines

Objectives

Compare sedation and general anesthesia by physiologic outcomes

Compare drug administration by access, control of dosage

Relate drug administration to elimination; alpha half-life (redistribution) and beta half-life (elimination) Describe possible clinical outcomes associated with choice of drug administration

Evaluation Seminar One

1)The blood/gas ratio of Nitrous oxide enables a rapid induction of anesthesia and then elimination of the drug at procedure's end.

a-True

b-False

2)Redistribution of a sedative drug implies

a-The drug may no longer have a pharmacologic effect

b-Metabolic degradation in the liver

c-Excretion by the kidney in urine

d-Dispersal throughout the body from the primary pharmacologic site of action

e-A and D

3) All Patients usually respond to similar doses of drugs in the same manner

a-True

SEMINAR Three: Pulmonary/Respiratory Physiology: A Review <u>43min.</u>

REFERENCES

Krauss et al: Capnograhy for procedural sedation and analgesia in the emergency department.

Ann Emerg Med 50:172, '07

www.howequipmentworks.com Carbon Dioxide monitoring-capnography,

Oxygen monitoring-Pulse Oximetry

Outline

Gas mixtures in respiration

Gas exchange across alveolar-blood interface

Monitoring arterial Oxygen levels: Arterial blood gases vs. Pulse Oximetry

Monitoring exhaled Carbon Dioxide: Capnography

Objectives

Discuss relationship between lung function and gas exchange at the alveolus

Discuss relationship between monitoring with pulse oximetry and arterial Oxygen levels

Compare monitoring: Pulse Oximetry vs. Capnography

Describe how sedative drugs might affect blood Oxygen levels

Evaluation Seminar Three

1)Oxygen is very soluble in blood plasma

a-True

b-False

2)Respiratory rates, number of breaths and depth of breaths, is driven by carbon dioxide levels in healthy patients

a-True

b-False

3)A rapid decrease in Oxygen saturation during conscious sedation measured by pulse oximetry from 97% to 89% is usually the result of

a-Malfunction of the monitor

b-Airway obstruction

c-Allergic response to drugs

d-Pain from the procedure

e-Carbon dioxide build-up in the blood

4)Capnography, a measure of exhaled Carbon Dioxide, offers an estimate of pulmonary gas exchange a-True

SEMINAR Four: Evaluation of patients for sedation / anesthesia 19min.

REFERENCES

Lee A et al: A systematic review (meta-analysis) of the accuracy of the Mallampati tests to predict the difficult airway". Anesthesia and analgesia 102:1867, 2006

Nuckton TJ et al: Physical examination: Mallampati score as an independent predictor of obstructive sleep apnea. Sleep 29: 903, 2006

http://www.nhlbi.nih.gov/quidelines/obesity/BMI/bmicalc.htm

Kiser M et al: Accuracy of fingerbreadth measurements for Thyromental Distance estimates: A brief report. AANA J 79:15, 2011

Outline

American Society of Anesthesiologists Classification: ASA I to V

Pertinent medical History

History related to nitrous oxide side effects

Examination targeted to airway / Malampati Score / Body Mass Index

Objectives

Classify patients by Health Status

Assess patients specifically as candidates for inhalation anesthetics

Evaluation Seminar Two

1)A history of sleep apnea is not a relative contraindication for sedation with nitrous oxide a-True b-False

2)A patient classified as ASA III because of uncontrolled hypertension might benefit from nitrous oxide sedation within limits.

a-True

b-False

3)The difference between classifications ASA II and ASA III could be based on a-medications the patient is taking b-a patient's disease impact on lifestyle c-a primary care physician's consultation d-medical history e-all of the above

4)A Body Mass Index at least 30 is often associated with a compromised airway a-True $\,$

SEMINAR Five: Anesthesia / Monitoring Equipment <u>25min.</u>

REFERENCES

Lightdale et al:Microsteam capnography improves patient monitoring during moderate sedation:

A randomized controlled trial. Pedoatrics 117:e1170 '06

Burton et al: Does end-tidal carbon dioxide monitoring detect respiratory events prior to current sedation monitoring practices. Acad Emerg Med 13:500 '06

<u>www.howequipmentworks.com</u> (capnography, pulse oximetry, vaporisers)

Outline

Anesthesia machines for administering N₂O

Monitoring options for Minimal Sedation-Anxiolysis, Moderate Sedation:

Pre-cordial auscultation, Pulse oximetry, Capnography

Monitoring arterial Oxygen levels: pulse oximetry Monitoring exhaled Carbon Dioxide: Capnography

Objectives

Sequence technical steps for administration of N₂O Select monitoring protocol for individual patient Compare clinical uses of Pulse Oximetry and Capnography

Evaluation Seminar Four

1)Administration of 100% Oxygen at the start of the procedure a-Removes carbon monoxide from the ambient room air b-Offers protection to staff from leaking N_2O c-Reduces the Nitrogen content in the patient's lungs d-Facilitates transfer of N_2O to the bloodstream e-Answers C and D

2)Monitoring with pulse oximetry provides an estimate of the Oxygen content of the blood a-True

b-False

3)Anesthesia machines with "Fail Safe" alarms detect a decreasing concentration of Nitrous Oxide a-True

b-False

4)Capnography outcomes can be observed before outcomes of oxygen desaturation/hypoventilation with Pulse Oximetry

a-True

SEMINAR Six: Administration of Nitrous Oxide <u>17.5min.</u>

REFERENCES

White PF et al: New criteria for fast-tracking after outpatient anesthesia:

A comparison with the modified Aldrete's scoring system. Anesth Analg 88:1069, 1999

http://www.meddentsafety.com/catalog/safe_sedate (Safe Sedate Nasal Masks)

http:// http://www.flexicare.com then search nasal hoods (Masks with Capnography port)

Outline

Preparation of the patient for N₂O anesthesia/diet modifications Levels of N₂O appropriate for the patient Signs of N₂O effects on the patient Recovery from N₂O anesthesia /Discharge protocol Anesthetic complications: Nausea, Excitability, Loss of Airway

Objectives

Prepare patient for planned anesthesia: Diet, Care giver responsibility Decide levels of anesthesia based on the patient's responses Sequence steps if patient becomes agitated, disoriented, nauseated Sequence steps if airway blocked Implement discharge protocol after anesthesia

VIDEO CLIPS

Flexcare Mask (Length 4min.) Safe Sedate Mask (Length 4Min.)

Evaluation Seminar Six

1)Restricting solid food intake 6hr prior to anesthesia minimizes nausea and vomiting a-True

b-False

2)On repeat dental visits most patients respond similarly to the same levels of $N_2\text{O}$ anesthesia a-True

b-False

3)After N_2O anesthesia it is advisable to have the patient accompanied home a-True

b-False

4)The Aldrete Scoring System is very useful, but not the only consideration in discharge of patients after a procedure under sedation.

a-True

SEMINAR Seven: Side Effects / Hazards to Staff of Nitrous Oxide <u>47min.</u>

REFERENCES

Sanders et al: Biologic Effects of Nitrous Oxide. Anesthesiology 109:707, '08

Yagiela JA: Health Hazards and Nitrous Oxide: A Time for Reappraisal Anesth Prog 38:1, '91

Tramer M et al: British Journal of Anaesthesia Omitting nitrous oxide in general anaesthesia:

meta-analysis ofintraoperative awareness and postoperative emesis in randomized
controlled trials 76:186 '96; 76

Gan TJ et al: Society for Ambulatory Anesthesia Guidelines for theManagement of Postoperative Nausea and Vomiting Anesth Analg 105:1615, '07

Outline

Nitrous oxide levels in ambient air with/without scavenging Patients at risk for acute Nitrous oxide exposure, mechanisms Staff at risk for chronic Nitrous oxide exposure, mechanisms Monitoring for chronic Nitrous oxide exposure

Objectives

Evaluate patients for high risk of nausea / vomiting Evaluate patients for high risk of vitamin B_{12} deficiency Explain hazards to staff Understand mechanisms of reducing N_2O in ambient air

VIDEO CLIPS

Nausea (Length 3min.) Stage Two Anesthesia (Length 7min.) Deep Sedation with Airway Compromise (Length 4min.)

Evaluation Seminar Seven

1)Which of the following does not pose an increased risk of nausea and vomiting with nitrous oxide anesthesia?

a-History of "car sickness"?

b-Nausea and vomiting with a previous anesthetic?

c-Female gender

d-Anesthetic with propofol

e-Opioids as a component of the anesthetic regimen

2)A patient's previous history includes anesthetics with N_2O and no nausea and vomiting. This suggests a low risk with future anesthetics.

a-True

b-False

3)A history of inflammatory bowel disease suggests the possibility of a vitamin B_{12} deficiency.

a-True

b-False

4) Chronic exposure to Nitrous Oxide even at low levels

a-Affects immune cell development

b-Retards red cell proliferation

c-Affects myelin maintenance on peripheral nerves

d-Inhibits Ovulation similar to the effect of intensive exercise

e-All of the above

SEMINAR EIGHT: NC State Board of Dentistry Regulations for Sedation / Anesthesia Pending Regulation Changes-Coming Soon

Version April 2015